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Barnes KA, Anderson KM, Plitt M, Martin A. Individual dif-
ferences in intrinsic brain connectivity predict decision strategy. J
Neurophysiol 112: 1838-1848, 2014. First published July 16, 2014;
doi:10.1152/jn.00909.2013.—When humans are provided with ample
time to make a decision, individual differences in strategy emerge.
Using an adaptation of a well-studied decision making paradigm,
motion direction discrimination, we probed the neural basis of indi-
vidual differences in strategy. We tested whether strategies emerged
from moment-to-moment reconfiguration of functional brain networks
involved in decision making with task-evoked functional MRI (fMRI)
and whether intrinsic properties of functional brain networks, mea-
sured at rest with functional connectivity MRI (fcMRI), were associ-
ated with strategy use. We found that human participants reliably
selected one of two strategies across 2 days of task performance,
either continuously accumulating evidence or waiting for task diffi-
culty to decrease. Individual differences in decision strategy were
predicted both by the degree of task-evoked activation of decision-
related brain regions and by the strength of pretask correlated spon-
taneous brain activity. These results suggest that spontaneous brain
activity constrains strategy selection on perceptual decisions.

strategy; decision making; individual differences; fMRI; fcMRI

DECISIONS INVOLVE a set of core steps. Individuals process
sensory signals, evaluate them for relevant evidence, and
indicate decisions with motor responses (Gold and Shadlen
2007). However, with increased time available for a decision,
variability in decision speed and strategy emerges. Consider
two people seated at a diner, contemplating what to eat. One
skims the menu and quickly decides on an order. The other
shifts attention (e.g., between the menu and specials board) or
pauses the decision process until more information can be
obtained from the waiter. Cross-subject variability in decision
strategy results partly from stable behavioral factors, including
cognitive abilities (Aminoff et al. 2012; Badre et al. 2012;
Bruine de Bruin et al. 2007; Meriau et al. 2006; Stanovich and
West 2000), personality (Aminoff et al. 2012; Liverant and
Scodel 1960; Soane and Chmiel 2005), and willingness to
acquire costly evidence (Furl and Averbeck 2011; Treadway et
al. 2009). Many studies examining the neural basis of decision
making use quick, perceptual tasks to curtail variability in
strategy. Therefore, little is known about neural mechanisms
that account for cross-subject variability in decision strategy.
Do stable strategies emerge from moment-to-moment recon-
figuration of functional brain networks involved in decision
making? Or do intrinsic network properties constrain the strat-
egies to which individuals reliably turn?

Here we examined the neural basis of strategy differences
during motion direction discrimination. This task provides a
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strong foundation for investigating strategy; the neurobiologi-
cal circuitry underlying motion direction decisions is well
established in nonhuman primates (Britten et al. 1992) and
humans (Heekeren et al. 2006; Kayser et al. 2010). In our
study, participants determined the direction of motion for noisy
dot kinematograms. We manipulated stimulus coherence
within trials, such that coherence doubled every 2 s in each 6-s
trial (Fig. 1). We hypothesized that participants would use one
of two strategies. People could continuously evaluate evidence,
as in sequential sampling models (Ratcliff 1978), or, if they
failed to reach a decision upon initial inspection, they could
wait for a coherence increase before accumulating further
evidence (henceforth “expedited” vs. “wait and see” accumu-
lation strategies, respectively). Strategy was determined from
the reaction time (RT) distribution across trials on 2 days of
in-scanner task performance. Strategy, as quantified by this
cumulative approach, is thus more closely aligned with con-
cepts including “set characteristic” or “trait” behaviors than
with behaviors influenced by situational factors.

We probed the neural basis of decision strategy with task-
based functional MRI (fMRI) and resting-state functional con-
nectivity MRI (fcMRI). Using fMRI, we quantified temporal
characteristics of the task-evoked BOLD signal to determine
the decision process stage (i.e., sensory processing, evidence
accumulation, or decision/response selection) to which a brain
region contributed (Ploran et al. 2007). The approach leverages
response time-dependent or -independent changes in BOLD
signal timing (i.e., onset, time to peak, and time course width),
making the following assumptions: Sensory regions should
become active when the stimulus is presented and remain
active until the stimulus terminates; such regions should not
show activity that varied with subjects’ decision time. Regions
that are involved in evidence accumulation would become
active after sensory regions, and they would continue to be
active until evidence reached a decision threshold. So, the
onset point of these regions should not vary with decision time,
but the time to peak should. Consequently, earlier responses
would elicit narrower BOLD time courses than later responses.
Regions involved in applying a decision rule would become
active after evidence reaches a threshold. At this time, a
response would be prepared and generated. So, for these
regions, onsets and time to peak should vary with decision
times; decision regions should also have the narrowest time
courses, and time course width should not vary with decision
time.

Strategy effects were anticipated in regions performing
particular decision-related computations. We predicted that
an “expedited” rather than “wait and see” accumulation
strategy should yield stronger activation in regions identi-
fied as evidence accumulators. This prediction, which may
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Experimental Design
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Fig. 1. Tllustration of the experimental design and of the trial structure for a
single example trial. On each trial, the percentage of coherently moving dots
doubled every 2 s.

seem counterintuitive at first glance, stems from the follow-
ing idea: if we look at decisions made at roughly the same
time across subjects using different strategies, people who
are continuously accumulating evidence, instead of pausing
the decision process, should have greater activation in
evidence accumulation regions. By extension, the difference
between subjects using different strategies should increase
with time spent accumulating evidence (i.e., for decisions
made in later in the 6-s trial).

Using fcMRI, we examined coupling at rest between deci-
sion regions to determine whether intrinsic brain connectivity
predicted strategy. Here we tested whether groups identified by
their strategy differed in the strength of correlation between
decision-related brain regions in the absence of, and prior to,
task performance. Results indicated that intrinsic coupling
between decision-related brain regions predicts decision strat-

cgy.

MATERIALS AND METHODS

Subjects

Twenty-six right-handed, native English-speaking adult partici-
pants with normal or corrected-to-normal vision were recruited from
the National Institutes of Health. Participants were screened at the
National Institute of Mental Health for current or past psychiatric or
neurological conditions and were not taking any centrally acting
medications. Informed consent was obtained from each participant in
accordance with a protocol approved by the National Institutes of
Health Institutional Review Board. Participants were compensated
monetarily for participation.

Five participants were excluded from all analyses for chance task
performance (n = 3), excessive head motion (n = 1), or inability to
complete the second visit (n = 1). An additional three participants
were excluded from the fMRI analyses for having an insufficient
distribution of responses across response bins for analysis; however,
these subjects were included in the fcMRI analyses. The fMRI
analyses thus included 18 participants [10 men, 8§ women; ages 21-25
yr (mean = 22.83 yr)], and the fcMRI analyses included 21 partici-
pants [10 men, 11 women; ages 20—26 yr (mean = 23.0 yr)].
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Stimuli

Subjects viewed dot kinematograms of either plain circles or red
dots in circles (Gao et al. 2010)." Stimuli were generated with
Psychophysics Toolbox version 3 (Brainard 1997; Pelli 1997) in
MATLAB (R2011a) and Variable Coherence Random Dot Motion
Scripts (https://www.shadlenlab.columbia.edu/resources/VCRDM.
html). Stimuli were generated with a dot size of 20 pixels and
maximum dot density of 16.7 dots/frame. Dot density was set at 16.7
dots per square degree per second. Dot velocity was 5°/s. Motion
coherence doubled every 2 s over a 6-s stimulus presentation, across
two levels of increasing stimulus coherence (16% — 32% — 64% and
22% — 44% — 88%). Stimuli were front projected within a 1.80°
square aperture.

Decision Making Paradigm

Participants viewed either plain circles or red dots in circles on
separate days (order counterbalanced across subjects). Stimuli were
presented as videos with Presentation software (NeuroBehavioral
Systems). For each level of coherence, five different videos were
generated so that the signal and noise varied on each trial. On each
day, participants completed 196 trials, thus viewing each of the 5
unique stimulus videos ~39 times. For each trial, subjects were
instructed to indicate the direction of motion (left/right) by button
press with their left or right thumb, respectively, on an MRI-compat-
ible button box (Current Designs). Subjects were instructed to respond
as quickly and as accurately as possible. Stimuli were displayed for 6 s
irrespective of response time to facilitate an analytic approach based
on whether a region’s response varied as a function of the subject’s
decision time. It was thus essential that the stimulus duration and
response times be decoupled, although this limits the nature of the
cognitive questions that can be asked with this task.

There was nothing tangible to be gained (i.e., no reward) for faster
or more accurate responding. Furthermore, participants were aware
that faster responses would not accelerate the completion of the task
because they were informed of the fixed stimulus duration irrespective
of response time. Therefore, there was no intrinsic reward associated
with ending the trial for faster performance.

Image Acquisition

Data were acquired on a GE MR 750 3-T system using a GE
32-channel head coil. Structural images were acquired with a sagittal
magnetization prepared rapid gradient echo (MP-RAGE) T1-weighted
sequence [time echo (TE) = 3.42 ms; time repetition (TR) = 7 ms;
time to inversion (TI) = 425 ms; flip angle = 7°; phase acceleration
factor = 2; 176 slices with 1 X 1 X 1-mm voxels]. Functional images
for task runs were obtained with an axial echo-planar imaging (EPI)
sequence (TE = 27 ms; TR = 2,000 ms; flip angle = 77°; phase
acceleration factor = 2; forty-three 3-mm-thick slices with 3 X 3-mm
voxels). Functional images for rest runs were obtained with an axial
EPI sequence (TE = 28.1 ms; TR = 2,500 ms; flip angle = 77°; phase
acceleration factor = 2; forty-four 3-mm-thick slices with 2 X 2-mm
voxels). One hundred fifty-four volumes were acquired for each task
run, and one hundred thirty-four volumes were acquired for each rest
run. Physiological variables of heart rate and respiration were re-
corded during task and rest scans with a pulse oximeter placed on the
left index finger and a pneumatic belt positioned at the level of the
diaphragm, respectively.

! The latter stimulus type was used for an orthogonal analysis examining the
effects of low-level cues on perceptions of animacy in nonsocial tasks. For
these stimuli, the position of the red dots in the white circles was irrelevant to
the task at hand (i.e., the red dots were not predictive of the direction of
motion).
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JMRI Preprocessing

fMRI preprocessing was conducted separately for each subject with
programs in AFNI (Cox 1996). The first four volumes of the time
series for each run were discarded from analysis. Volumes were time
shifted to correct for slice time acquisition differences. Anatomical
data were aligned to the EPI data, and registered anatomical data were
warped into a Talairach version of the MNI group brain standard
space (TT_N27). EPI data were volume registered and warped into
standard space in a single transformation. Each volume of each run
was blurred with a 4-mm full-width half-maximum (FWHM) Gauss-
ian kernel. EPI data were scaled so that each voxel time series had a
mean of 100.

JcMRI Preprocessing

fcMRI preprocessing was conducted separately for each subject
(Gotts et al. 2012; Jo et al. 2010). Specifically, resting-state fcMRI
data were despiked and corrected for physiological motion effects
(Glover et al. 2000), the first four volumes of the time series were then
discarded, volumes were time shifted to correct for slice time acqui-
sition differences, and all volumes were registered to the first volume
of the first run. Segmented MP-RAGE volumes generated with Free-
Surfer (Fischl et al. 2002) were aligned to the EPI data and were used
to generate subject-specific white matter, ventricle, and draining
vessel masks (Jo et al. 2010). For each voxel, the following nuisance
regressors and their derivatives were created: an average ventricle
time series, an average draining vessel time series, a local average
white matter time series, 6 parameter estimates for head motion, and
13 regressors for respiration from RETROICOR and RTV. These
nuisance signals were detrended prior to regression, and a 4th-order
baseline detrending was applied to the regression model. The pre-
dicted time series of these nuisance variables was then subtracted
from the voxelwise time series, yielding a residual time series. Each
volume of each run from this residual was blurred with a 6-mm
FWHM Gaussian kernel, data were rescaled to reflect percent signal
change, and the two runs for each subject were concatenated. Finally,
data were warped into a Talairach version of the MNI group brain
standard space (TT_N27).

Data Analysis

Behavioral data analysis. Percentage of correct responses and
median RTs for correct trials were computed for each subject and
session.

fMRI analysis. First-level analyses consisted of individual general
linear models (GLMs) that included a parameter for each of 10 time
points after stimulus onset (so, times 0-18 s) for each of three
conditions of interest: correct responses made in time 0—2,000 ms (bin
1 responses), correct responses made in 2,001-4,000 ms (bin 2
responses), correct responses made in 4,001-6,200 ms (bin 3 re-
sponses), and error trials. We employed a simple error model, which
compiled all error types into a single regressor, rather than creating
separate regressors for error type (omission vs. commission) or error
RT. While the cohort’s average error rate was ~10%, there was
substantial variability in error rates across subjects (min = 0%;
max = 40%). However, the near-ceiling accuracy for the majority of
subjects would have yielded very few trials for this analysis. Addi-
tional nuisance signals in the first-level regressions included motion
parameters and drift parameters (modeled as a 3rd-order polynomial).
Volumes with head motion exceeding 0.3 mm/TR were censored from
the first-level GLM.

Second-level analyses consisted of a Response Bin (/-3) X Time
Point ANOVA conducted on day I data to identify regions of interest
(ROIs) active, or modulated by decision time, during motion direction
decision making. We identified the 50 strongest peaks of activation
from main effect of Time Point and Response Bin X Time Point
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interaction from day 1 data. If regions overlapped within 10 mm of
one another, one of the overlapping regions was randomly eliminated.
This procedure resulted in 75 unique ROIs. An additional 3 ROIs were
eliminated for <10% likelihood of being in gray matter based on
probabilistic cytoarchitecture maps in standard space (Eickhoff et al.
2007), resulting in a final set of 72 ROIs for analysis.

Functional classification of ROIs. ROIs from day I were applied to
day 2 data to extract independent time courses for functional classi-
fication of ROIs. Onset time, time to peak, and time course width were
determined for each subject and response bin at each ROI. We
determined whether the region showed activation or deactivation:
activation was defined as a maximal percent signal change from
baseline greater than zero; deactivation was defined as a maximal
percent signal change from baseline less than zero. For activation
ROIs, the onset time was defined as the first TR at which activity
significantly exceeded baseline in the first-level GLM and the peak
was defined as the maximum of the time series. For deactivation
ROIs, the onset time was defined as the first TR at which activity
significantly fell below baseline in the first-level GLM and the peak
was defined as the minimum of the time series. Thus linear interpo-
lation was not used to calculate onset; rather, the significance of the
t-statistic associated with each time point in the first-level GLM was
assessed, with a statistical cutoff of P < 0.05. This approach had the
advantage of allowing us to estimate onset points on a subject-by-
subject basis to yield multiple assessments per ROI, thereby allowing
a regionwise test of onset. To estimate time course width, we gener-
ated 1,000 points between each time point and performed a linear
interpolation between each pair of consecutive time points (Ploran et
al. 2007). This interpolation transformed the original 10-point time
course into a series of 9,001 points. Time course width was defined as
the FWHM of the time series around the peak.

We identified three types of information processing profiles puta-
tively involved in perceptual decision making. Sensory processing
ROIs were defined by significantly stronger correlations (i.e., differ-
ence in Fisher r to z transformed correlation coefficients P < 0.05) of
time series across response bins than for temporally shifted versions
of those time series across response bins. Evidence accumulation
ROIs were defined by a significant difference in time to peak across
bins, but not onset. Decision/response selection ROIs were defined by
a significant difference in onset time and time to peak. While the
criteria for evidence accumulation and decision/response selection
ROIs were mutually exclusive, the criteria for sensory ROIs were not
mutually exclusive with the other two classifications. In the event that
an ROI met criteria for two classifications (e.g., an ROI showed a
small but statistically significant effect of response bins on either time
to peak or onset and time to peak, but the time courses were generally
more similar across response bins), we opted for the more conserva-
tive classification (i.e., sensory processing) but note all classifications
an ROI met in Table 1.

fcMRI Analysis

For each ROI, time series were extracted for each subject and
session and correlated, resulting in a 72 X 72 ROI matrix of corre-
lations. Time points corresponding to periods of head motion > 0.3
mm/TR and time points two prior to and two subsequent to the flagged
volumes were excluded from the correlation calculation, i.e., the data
were motion scrubbed (Power et al. 2012). Scrubbed correlation
coefficients were Fisher transformed to z' values to stabilize variance
across the range of Pearson’s r values.

RESULTS
Behavioral Results

Overall, decisions were highly accurate (day I: mean =
91.01%, SD = 10.03; day 2: mean = 90.07%, SD = 11.57).
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Table 1. Complete listing of ROIs identified from the decision task

X Y V4 Index Anatomical Landmark BA Classification Dir
-5 2 48 1 Presupplementary motor 6 — Pos
11 —14 -1 19 Thalamus — Pos
56 —44 30 23 Supramarginal gyrus 40 — Pos
—50 5 12 24 Precentral gyrus 44/6 — Pos
—47 —26 21 26 Posterior insula — Pos
47 35 24 28 Middle frontal gyrus 46 — Pos
35 —26 45 29 Postcentral gyrus 3 — Pos
—35 —26 48 32 Precentral gyrus 3 — Pos
53 —26 45 33 Postcentral gyrus 2 — Pos
—35 —20 57 37 Precentral gyrus 4 — Pos
—38 -353 —40 39 Cerebellum — Pos
29 —74 27 45 Cuneus 19 — Pos
—44 5 30 52 Inferior frontal gyrus 9 — Pos
—14 —23 15 61 Thalamus — Pos
-53 26 12 62 Inferior frontal gyrus 45 — Pos
—56 —20 45 63 Postcentral gyrus 2 — Pos
2 —23 30 25 Mid-cingulate gyrus 23 — Neg
8 17 36 4 Anterior cingulate cortex 32 Accumulator Pos
41 11 9 5 Anterior insula Accumulator Pos
8 —17 12 6 Thalamus Accumulator Pos
47 14 —1 9 Anterior insula/inferior frontal gyrus 47 Accumulator Pos
32 44 27 11 Middle frontal gyrus 9 Accumulator Pos
8 26 30 12 Anterior cingulate cortex 32 Accumulator Pos
2 =77 —16 21 Cerebellum Accumulator Pos
41 41 18 22 Middle frontal gyrus 10 Accumulator Pos
5 —62 —10 27 Cerebellum Accumulator Pos
—38 -5 18 35 Mid-insula Accumulator Pos
—26 —11 51 44 Precentral gyrus 6 Accumulator Pos
32 -50 —25 49 Cerebellum Accumulator Pos
—32 —44 39 51 Intraparietal sulcus 40 Accumulator Pos
—23 —65 48 56 Superior parietal lobule 7 Accumulator Pos
11 —68 —40 59 Cerebellum Accumulator Pos
53 —20 27 65 Postcentral gyrus/inferior parietal lobule 2/40 Accumulator Pos
—26 —74 27 68 Precuneus 31 Accumulator Pos
2 —32 24 18 Posterior cingulate cortex 23 Accumulator Neg
—41 —71 27 64 Angular gyrus 39 Accumulator Neg
—29 23 9 2 Anterior insula Decision Pos
8 8 45 3 Presupplementary motor 6 Decision Pos
—11 20 30 7 Anterior cingulate cortex 32 Decision Pos
41 2 42 10 Middle frontal gyrus 6 Decision Pos
8 =5 57 13 Supplementary motor area 6 Decision Pos
-8 —11 51 14 Supplementary motor area 6 Decision Pos
—56 —20 24 15 Supramarginal gyrus 40 Decision Pos
—44 14 3 17 Insula/frontal operculum Decision Pos
—14 -8 21 30 Caudate Decision Pos
—11 =5 63 31 Superior frontal gyrus 6 Decision Pos
14 -5 21 36 Caudate Decision Pos
—-32 47 27 38 Superior frontal gyrus 9 Decision Pos
44 2 27 42 Precentral gyrus/inferior frontal 9/6 Decision Pos
32 26 9 46 Inferior frontal gyrus/insula 45/13 Decision Pos
—32 —47 —25 48 Cerebellum Decision Pos
29 —47 42 54 Inferior parietal lobule 40 Decision Pos
—47 —32 39 55 Inferior parietal lobule 40 Decision Pos
5 —29 -1 57 Thalamus Decision Pos
41 =5 51 58 Precentral gyrus 6 Decision Pos
32 —14 —4 70 Putamen Decision Pos
20 —62 —40 72 Cerebellum Decision Pos
8 —53 15 67 Posterior cingulate cortex 30 Decision Neg
47 =77 —4 41 Inferior occipital gyrus 19 Sensory Pos
—14 —89 15 47 Middle occipital gyrus 18 Sensory Neg
-8 —74 -7 50 Lingual gyrus 18 Sensory Neg
14 —86 3 53 Lingual Gyrus 17 Sensory Neg
14 —80 21 69 Cuneus 18 Sensory Neg
8 50 3 71 Ventromedial prefrontal cortex Sensory Neg
32 -89 6 16 Middle occipital gyrus 18 Sensory/accumulator Pos
29 —83 —4 8 Inferior occipital gyrus 18 Sensory/decision Pos
26 —92 —10 20 Inferior occipital gyrus/fusiform 18 Sensory/decision Pos
—26 -92 —4 34 Inferior occipital gyrus 18 Sensory/decision Pos
Continued
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Table 1.—Continued

INTRINSIC BRAIN CONNECTIVITY CONSTRAINS STRATEGY

X Y Z Index Anatomical Landmark BA Classification Dir
—32 —80 =17 40 Middle occipital gyrus 18 Sensory/decision Pos
41 —62 —10 43 Fusiform gyrus 37 Sensory/decision Pos
—23 —83 —-19 60 Cuneus 18 Sensory/decision Pos
—32 —74 —19 66 Fusiform gyrus 19 Sensory/decision Pos

Coordinates (X, Y, Z) are reported in Talairach space with the nearest associated anatomical landmark. Index allows for cross-reference with Tables 2 and 3.
BA denotes nearest Brodmann area. Classification denotes whether the region of interest (ROI) met criteria for 1 or more stage of the decision process; —, not
classified. Direction (Dir) denotes whether the region showed a positive-going (Pos) or negative-going (Neg) BOLD signal change relative to baseline.

Median RT occurred approximately midway through the 6-s
trial (day I: mean = 2.62 s, SD = 0.80; day 2: mean = 2.59
s, SD = 1.05). Neither accuracy (P = 0.88) nor median RT
(P = 0.83) differed across days, confirming that behavior was
highly consistent across days (Fig. 2, A and B). Across indi-
viduals, however, median decision times (min = 0.87 s; max =
4.54 s) and RT distribution shape (Fig. 2C) varied widely. This
variability in response speed and distribution suggested that
participants might have employed different decision making
strategies.

Decision strategy was determined from individuals’ distri-
bution of RTs across trials on both days of the task. “Expe-
dited” evidence accumulation was expected to yield faster
decisions and unimodal, positively skewed RT distributions
[the hallmark RT distribution across a range of decision tasks
(Balota and Yap 2011; Luce 1986; Ratcliff and McKoon
2008)]. For the “wait and see” strategy, we expected slower

A

Fig. 2. A and B: histograms depicting distribu-
tion of response times for 2 example subjects,
with data from day I in blue and data from day
2 in magenta. Histograms are normalized to

decisions and multimodal RT distributions, with troughs in the
response time distributions corresponding to periods of in-
creasing coherence. This pattern of results was expected to
emerge if participants delayed the decision process until a
pending coherence increase.

We quantified strategy by first determining the cumulative
distribution function (CDF) for each subject’s correct RTs. We
then used this CDF to calculate two metrics at two time points:
1) the proportion of responses that were executed by the time
of the coherence increases (i.e., at 2 s and 4 s) and 2) the
differences in CDF values spanning the coherence increases
(i.e., 2.25 s—1.75 s and 4.25 s—3.75 s). This approach was used
to account for overall response speed (higher CDF values at 2
and 4 s would indicate faster responses because more responses
would have been executed at the sampled times) and likelihood
of responding around coherence increases (higher differences
in CDF values around the coherence increases would indicate

facilitate comparison of distribution shapes
across subjects. C: motion direction discrimi-
nation performance was variable across partic-
ipants. Individual’s fitted reaction time (RT)
distributions are plotted as probability density
functions by time. Line color depicts strategy C
score values determined from principal com- x 107
ponent analysis. Increases in stimulus coher- ol
ence are marked by the vertical black lines at
2 s and 4 s. “Expedited” subjects were more
likely to show a positively skewed, unimodal
response distribution (example “expedited”
subject’s RT distribution, also shown in A, bold
blue line), whereas slow subjects were more
likely to show multimodal RT distributions
(example “wait and see” subject’s RT distribu-
tion, also shown in B, bold orange line).
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a continuation of responses during coherence increases, while
lower values would indicate a lack of responding during
coherence increases, as would be expected if a subject em-
ployed the “wait and see” strategy and did not execute re-
sponses during a coherence increase).

A significant degree of correlation was expected between the
CDF-based metrics because CDF values from earlier time
points necessarily constrain CDF values at later time points.
Thus principal component analysis was used to generate a set
of uncorrelated components based on the four values calculated
as described above. The first component explained 73.84% of
the variance. The second component explained 17.18% of the
variance but had an eigenvalue < 1. We therefore defined
strategy as the weighted scores associated with the first prin-
cipal component.

To validate and interpret our measure of strategy, we
compared it to two metrics: median RT and model fits. As
expected given its construction, strategy was significantly
correlated with mean RT (r = 0.93, P < 0.0001). Strategy
was also significantly correlated with the number of Gauss-
ians comprising the model that best fit the RT distribution,
comparing unimodal, bimodal, and trimodal distributions
(Spearman’s p = —0.57, P = 0.007), although the direction
of this effect is opposite to our expectations as a conse-
quence of the highly positively skewed data from the fastest
subjects being better fit by trimodal than unimodal Gaussian
functions (see Freeman and Dale 2013 for discussion). The
behavioral data thus suggested a difference in decision
making strategies across subjects, with some subjects rap-
idly and continuously accumulating evidence and other
subjects sporadically accumulating evidence, waiting for
intervals of increased stimulus coherence. These behavioral
tendencies are reflected in subjects’ strategy scores, where
lower scores reflect a greater reliance on the “expedited”
strategy and higher scores reflect a greater reliance on the
“wait and see” strategy (Fig. 2C).

Identifying Brain Regions Involved in Decision Making

To determine the locations of brain regions involved in
motion direction decisions, we identified the strongest peaks of
activation from the first scan day (day 1) for two contrasts: 1)
significant activation changes in the BOLD signal during
motion direction decisions (main effect of Time Point) or 2)
significant response time-dependent BOLD signal changes
during decision making (Response Bin X Time Point interac-
tion). Response bin was defined as the interval in which the
response was made (bin 1 = 0-2 s, bin 2 = 2-4 s, bin 3 =
4-6 ). All tests were conducted with a statistical cutoff of P <
0.05, FDR corrected. We identified the 50 strongest peaks of
activation from main effect of Time Point and Response Bin X
Time Point interaction analyses from day I data. Regions
within 10 mm of other another or with <10% likelihood of
being in gray matter were eliminated, yielding a final set of 72
brain region ROIs. These ROIs included regions near estab-
lished nodes of motion direction discrimination circuitry such
as area MT+ and the intraparietal sulcus (IPS) (Fig. 3). A full
listing of identified ROIs and their associated statistics appears
in Table 1.
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Classifying Information Processing in Identified Regions

To independently characterize functional processing, we
analyzed the time course data from the second of the two scan
sessions (day 2) by applying the ROIs identified on day I to the
day 2 data. We classified brain regions on the basis of their
temporal properties as involved in sensory processing, evi-
dence accumulation, or decision/response selection. ROIs that
failed to meet these statistical criteria were not assigned a
classification. Our approach was unbiased regarding the direc-
tion of BOLD signal changes relative to baseline. Only posi-
tive-going regions involved in decision making are discussed
here, excepting cases where strategy differences emerged in-
volving regions with negative-going time courses.

Time course analysis identified 48 positive-going ROIs that
met classification criteria: 10 sensory processing regions, 17
evidence accumulation regions, and 21 decision/response se-
lection regions (see Table 1). Sensory processing ROIs were
located in occipital and posterior temporal cortex, regions
anticipated to be strongly engaged by visual motion (shown in
red in Fig. 3). Accumulator ROI locations included the IPS,
lateral frontal cortex, anterior cingulate cortex, and the cere-
bellum (shown in blue in Fig. 3). These results converge with
neurophysiology studies in nonhuman primates that have iden-
tified neuronal firing patterns indicative of evidence accumu-
lation in regions of the IPS and FEF. Decision/response selec-
tion ROIs were located in the anterior insula, presupplementary
motor area, premotor cortex, anterior IPS, as well as subcorti-
cal and cerebellar structures (shown in green in Fig. 3).
Decision/response selection signals were expected to emerge in
motor regions, given that decisions were indicated via button
press. In addition, these results converge with human imaging
studies that have implicated the anterior insula and presupple-
mentary motor cortex in decision selection (Kayser et al. 2010;
Nelson et al. 2010; Ploran et al. 2007).

Strategy Differences in Task-Based fMRI Activation

We then tested whether any of the ROIs identified on day 1
showed significant differences in activation strength on day 2
as a function of participants’ strategy scores (P < 0.05,
Bonferroni corrected for multiple comparisons across the 3
levels of Response Bin). Specifically, we tested for a correla-
tion between BOLD signal change at the peak time point in
each ROI’s time course and strategy scores for each response
bin. Two patterns of group differences emerged (Table 2 and
Fig. 4A). First, a positive correlation between strategy score
and magnitude of activation was seen in two occipital ROIs
that met criteria for sensory processing. These results indicated
that subjects using a “wait and see” strategy were more likely
to recruit regions involved in early, sensory stages of the
decision process.

Second, a negative correlation was seen between strategy
scores and magnitude of activation in 17 ROIs, 6 of which met
criteria for evidence accumulation, 6 of which met criteria for
decision/response selection, and 5 of which were unclassified.
Negative correlations here indicated a stronger degree of acti-
vation in subjects using the “expedited” strategy rather than the
“wait and see” strategy. These regions were located in the
anterior insula bilaterally, anterior cingulate cortex, posterior
parietal cortex, lateral prefrontal cortex, and subcortical struc-
tures. These results are consistent with our prediction that an
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Fig. 3. A: locations of regions of interest (ROIs) meeting criteria for sensory processing (red), evidence accumulation (blue), and decision/response selection
(green). Unclassified regions are shown in gray. B: time courses for an example sensory region in inferior occipital gyrus [29, —83, —4; rop], an evidence
accumulation region in premotor cortex [—26, —11, 51; middle], and a decision/response selection region in the anterior insula [—29, 23, 9; bottom] reveal
regional variability in BOLD signal onset time, time to peak, and full width at half maximum as a function of decision time. Time courses from bins -3 are
shown from darkest to lightest shades. Inset brains in B depict location of ROI on an inflated surface.

“expedited” rather than a “wait and see” strategy would yield
greater activation in evidence accumulation regions. Compared
with the sensory regions that showed a positive correlation
with strategy score, these results indicated that subjects using
an “expedited” accumulation strategy were more likely to
recruit regions involved in later stages of the decision process
(evidence accumulation and decision/response selection).

Strategy Differences in Resting-State fcMRI Correlation
Strength

All participants underwent resting-state scanning before and
after their task scans on both days (Fig. 1). We examined these
resting-state data to determine whether group differences in
decision strategy were related to intrinsic brain connectivity.
To focus our analysis on decision-related circuitry, we applied
the 72 ROIs identified in the task-based fMRI analysis to the
resting-state data and computed the correlation coefficients
between these brain regions at rest.

The pretask data from the first day of scanning (rest session
1) was reserved for our key test: whether resting-state func-

tional connectivity strength predicted decision strategy. The
remaining data (i.e., ROI to ROI correlation values from rest
sessions 2—4) were used for feature selection. This two-step
approach was employed to reduce the dimensionality of a
large, 72 X 72 connection matrix, thereby minimizing the
potential for statistical overfitting. We used multivariate ma-
chine learning regression methods (support vector regression
and ridge regression) to determine the degree to which resting-
state fcMRI data predicted decision strategy.

Feature selection results. This analysis was conducted with
resting-state data from all sessions except the pretask scans on
day 1 to identify candidate connections that might be strong
predictors of subsequent decision strategy. We identified con-
nections that reliably correlated with participants’ strategy
scores across sessions acquired after task performance [day I
post task (P < 0.1) X day 2 pre task (P < 0.1) X day 2 post
task (P < 0.1), yielding a combined probability of P < 0.001].
Group differences in correlation strength were seen in 12
connections (Table 3), showing three main patterns of differ-
ences. First, strategy scores positively correlated with fcMRI
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Table 2. Regions of interest where fMRI activation significantly
correlated with strategy scores

Anatomical Landmark

X Y VA [index; response bin(s)] Classification

Positive correlation with strategy score (greater in “wait and see”)

-26 =92 —4  Inferior occipital gyrus (34; 1)
—32 =80 —7  Middle occipital gyrus (40; 1)

Negative correlation with strategy score (greater in “expedited”)
47 35 24 Middle frontal gyrus (28; 2) —

Sensory
Sensory

—44 5 30  Inferior frontal gyrus (52; 3) —
—35 —20 57  Precentral gyrus (37; 2) —

11 —14 —1  Thalamus (19; 2) —
—-14 =23 15  Thalamus (67; 2) —

8 26 30  Anterior cingulate cortex (/2; 2,3) Accumulator

32 44 27  Middle frontal gyrus (//; 2) Accumulator

5 —62 —10  Cerebellum (27; 2) Accumulator

8 —-17 12 Thalamus (6; 2) Accumulator

8 17 36 Anterior cingulate cortex (4; 2) Accumulator

—23 —65 48  Superior parietal lobule (56; 3) Accumulator
—44 14 3 Insula/frontal operculum (/7; 3) Decision
41 =5 51  Precentral gyrus (58; 2) Decision
=56 —20 24 Supramarginal gyrus (/5; 1) Decision
41 2 42 Middle frontal gyrus (/0; 2,3) Decision
14 =5 21  Caudate (36; 2) Decision
5 —-29 -1 Thalamus (57; 2) Decision

Coordinates (X, Y, Z) are reported in Talairach space with the nearest
associated anatomical landmark and associated index number and response
bin. Full ROI details appear in Table 1 by index number. Classification denotes
whether the ROI met criteria for 1 or more stage of the decision process; —,
not classified. fMRI, functional MRI.

strength for four connections, including two connections to an
occipital sensory region that deactivated during the task. Sec-
ond, strategy scores negatively correlated with frontal and
parietal brain regions involved in evidence accumulation and
other frontal brain regions. Third, strategy scores negatively
correlated with anterior insula regions involved in decision/
response selection.

Eight of the twelve connections that showed strategy differ-
ences in resting-state correlation strength also showed strategy
differences in task-evoked activation (see Table 3). Given our

>

N
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05 0 05 1 156 2

05 0 05 1 15 2
Signal Change
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thresholds for the tests of group differences (P < 0.0167 for
the fMRI/task data and a combined probability of P < 0.0001
for the rest data), 1 out of 72 regions would be expected to
show a group difference in task and rest due to chance. The
observed overlap in 8 of 72 regions far exceeds chance levels,
suggesting that intrinsic differences in neural circuitry may
have given rise to individual differences in decision speed and
strategy.

Regression results. We examined the first day’s pretask
resting-state data to determine the degree to which strategy was
predicted by functional connectivity. This analysis allows us to
rule out the possibility that the strategy differences in resting-
state data were solely driven by the posttask scans. We used the
12 connections identified in the feature selection step in this
analysis. Across two machine learning regression methods,
pretask resting-state fcMRI data explained a statistically sig-
nificant amount of variance in subsequent decision strategy
(ridge regression r* = 0.315, P = 0.001; support vector
regression » = 0.179, P = 0.025). (We also report the
univariate correlation between strategy score and pretask day 1
resting-state data in Table 3). Collectively, these data suggest
that individual differences in intrinsic brain connectivity pre-
dict decision strategy, with a medium to large effect size. The
mean feature weights from the ridge regression analysis (av-
eraged across cross-validation folds) are depicted in Fig. 4B.
Mean feature weights from the ridge regression analysis were
highly correlated with mean feature weights in the support
vector regression analysis (r = 0.96).

DISCUSSION

Intrinsic brain connectivity reliably predicted stable individ-
ual decision strategy. These findings provide a neural basis for
the long-standing observation that consistent aspects of indi-
viduals’ personalities and abilities constrain decision strategy
(Aminoff et al. 2012; Badre et al. 2012; Bruine de Bruin et al.
2007; Furl and Averbeck 2011; Liverant and Scodel 1960;
Meriau et al. 2006; Soane and Chmiel 2005; Stanovich and
West 2000; Treadway et al. 2009). In our study, participants

Fig. 4. A: regions showing strategy differ-
ences in task-evoked activation. Top: a sen-
sory region in inferior occipital gyrus [—32,
—80, —7]. Bottom: a decision region in the
anterior insula [—44, 14, 3]. B: feature
weights associated with strategy differences
at rest; stronger connections in “expedited”
subjects are shown in orange, and stronger

3
o connections in “wait and see” subjects are
S 2 shown in p}lrple. Sphe.res depict thf: classification
(‘;’) 1 of ROIs with conventions from Fig. 3.
30
D
= -1
5 2 . Positive correlation with Strategy Score
3 . Negative correlation with Strategy Score
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Table 3. Connections showing significant functional connectivity strength by strategy score correlations
fMRI Mean Posttask
Anatomical Landmark Anatomical Landmark Mean Strategy fcMRI X Day 1 Pretask
X Y. Z (index) Classification XY Z (index) Classification ~ Connectivity Effect Strategy X Strategy
Positive correlation between functional connectivity strength and strategy score (greater in “wait and see”)
14,—80, 21 Cuneus (69) Sensory 53,—20,27  Postcentral gyrus/inferior ~Accumulator 0.22 No 0.51 0.49
parietal lobule (65)
14,—80, 21 Cuneus (69) Sensory —56,—20,24  Supramarginal gyrus Decision 0.22 Yes 0.40 0.20
(15)
—23,—65, 48 Superior parietal Accumulator —38, —5,18 Mid-insula (35) Accumulator 0.21 Yes 0.43 0.37
lobule (56)
—23,—65, 48 Superior parietal Accumulator —47,—-32,39  Inferior parietal lobule Decision 0.44 Yes 0.43 0.56
lobule (56)
Negative correlation between functional connectivity strength and strategy score (greater in “expedited”)
5,—62,—10 Cerebellum (27) Accumulator 2,—23,30  Mid-cingulate gyrus (25) — 0.08 Yes —0.45 —-0.20
—32,—44, 39 Intraparietal sulcus Accumulator 2,—23,30  Mid-cingulate gyrus (25) — 0.01 No —-0.44 —0.31
(&)
41, 11, 9 Anterior insula (5) Accumulator —44, 530  Inferior frontal gyrus — 0.17 Yes —0.48 —-0.43
(
47, 14, —1 Anterior Accumulator —44, 530 Inferior frontal gyrus — 0.17 Yes —-0.39 —-0.23
insula/inferior
frontal gyrus (9)
41, 41, 18 Middle frontal gyrus Accumulator —44, 14, 3 Insula/frontal operculum  Decision 0.26 Yes —0.56 —0.50
(22)
8, 8, 45 Presupplementary Decision 2,—23,30  Mid-cingulate gyrus (25) — 0.12 No —0.52 —0.33
motor cortex (3)
—44, 14, 3 Insula/frontal Decision 32, 26, 9 Inferior frontal gyrus/ Decision 0.38 Yes —0.53 —0.31
operculum (/7) insula (46)
8, —5, 57 Supplementary motor  Decision 32, 26, 9 Inferior frontal gyrus/ Decision 0.25 No —0.39 —0.28
area (13) insula (46)
Conventions as in Table 2. Classification denotes whether the ROI met criteria for 1 or more stage of the decision process; —, not classified. “Mean

connectivity” reports the average ROI-ROI correlation across all subjects and sessions. “fMRI strategy effect” denotes whether a ROI in that pair also shows
a significant correlation between task-evoked activation and strategy scores. “Mean posttask fcMRI X strategy” reports the average r value across 3 strategy score
correlation tests. “Day 1 Pretask X strategy” reports the correlation between functional connectivity strength and strategy scores for the pretask resting-state

session. fcMRI, functional connectivity MRI.

varied in the strategy they used to perform a motion direction
discrimination paradigm. Across 2 days, participants either
expeditiously accumulated evidence or paused the decision
process intermittently, waiting for the task difficulty to de-
crease before reinitiating the decision process (“expedited” vs.
“wait and see” accumulation strategy). We employed a data-
driven approach to classify information processing in decision-
related brain regions. The results supported our key prediction:
subjects relying more heavily on the “expedited” accumulation
strategy showed stronger task-evoked activation of, and stron-
ger resting-state correlations between, regions that performed
evidence accumulation. The pretask resting-state data also
allowed us to identify connections that differed in strength
before task performance, providing evidence that intrinsic
connectivity predicted strategy.

Stronger coupling of brain regions that performed evidence
accumulation biased participants toward the use of the more
efficient, “expedited” strategy that yielded faster decision
times. The extended stimulus reveal in the present paradigm
places high demands on mechanisms of evidence accumula-
tion, as participants must integrate noisy perceptual informa-
tion over a long time window (up to several seconds instead of
several hundred milliseconds as in most typical perceptual
decision making paradigms). Thus evidence accumulation in
the present paradigm may place high demands on sustained
attention. Two of the prefrontal brain regions that show con-
nectivity-behavior relationships in the present study, the ante-
rior insula and the anterior cingulate cortex, are among the
most consistent locations of brain activation across a range of
attention-demanding cognitive tasks (Duncan and Owen 2000;
Nelson et al. 2010). The robust recruitment of these regions
suggests that they may contribute to a general-purpose process.

Indeed, the anterior insula and anterior cingulate comprise a
core control network that makes particular contributions to
sustained attention and task set (Dosenbach et al. 2008). We
reference these meta-analytic studies to leverage a forward
inference with regard to possible functional roles for these loci
of group differences. In any event, it would be difficult to
discern whether greater activation in these regions by the
“expedited” subjects reflects exclusively greater decision-re-
lated activity or instead some combination of greater decision
and nondecision processing that might be colocalized within
the same voxels. Eye tracking may be a powerful complemen-
tary tool for disentangling the effects of decision and nonde-
cision processes such as attention and task set (e.g., Krishna et
al. 2014). Interestingly, these anterior insula and anterior cin-
gulate regions have also shown connectivity-behavior relation-
ships during shape identification tasks (Baldassarre et al. 2012)
and cognitive control measured with the flanker task (Mennes
et al. 2011), consistent with a more general-purpose role for
this circuitry. Future studies could directly test the idea that
sustained attention mediates the relationship between decision
strategy and connectivity with insula and cingulate regions that
perform evidence accumulation.

One unexpected result was the finding of stronger activation
of sensory brain regions in participants who used a “wait and
see” strategy. One possibility is that the greater activation of
sensory regions reflects a “time on task” effect, despite the fact
that strategy effects were seen when matching roughly for RT
with the binwise analysis. This speculation is supported by the
lack of overlap between these regional activation differences
and regions showing group differences in connectivity at rest,
when time on task is not a confounding factor. On a related
point about behavior, our behavioral measure of strategy was
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defined from each participant’s distribution of responses across
2 days of task performance. Overall accuracy was high
(~90%), and accuracy did not correlate significantly with
strategy (r = —0.13, P = 0.57), so it is unlikely that any
trade-offs between strategy/speed and accuracy were at play in
the present version of the task. This lack of a speed-accuracy
trade-off is less surprising in light of our task, which involved
a relatively protracted 6-s interval over which subjects could
make their decision.

Finally, it is noteworthy that there was substantial overlap in
the brain regions that showed strategy differences at rest and in
task-evoked activation. [Two-thirds of the connections (8/12)
that showed strategy differences in resting-state correlation
strength also showed strategy differences in task-evoked acti-
vation.] This observation is consistent with recent studies
reporting overlap in resting-state and task-evoked individual
differences associated with shape identification (Lewis et al.
2009) and cognitive control (Mennes et al. 2010). Recent work
has shown that resting-state fcMRI signal fluctuations are
strongly correlated with neuronal firing patterns, having been
linked to slow cortical potentials (He et al. 2008) and band-
limited power in the gamma frequency (Leopold and Maier
2012). In addition, regions displaying strong fcMRI correlation
strength largely, but not entirely, overlap with monosynapti-
cally connected brain regions and are related to anatomical
connection strength indexed with diffusion tensor imaging
(Honey et al. 2009). Thus group differences in fcMRI strength
may reflect subtle differences in correlated neuronal firing or
anatomical connection strength. Although exactly how slow
fluctuations in the fMRI signal relate to or modulate task-
evoked responses is not fully understood, the present study
strongly suggests that intrinsic connection strength can predis-
pose or constrain the set of strategies that individuals employ
when faced with a decision.
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